机械设备商友圈

  1. 1.4万 成员
  2. 7.7万 人气

参与评论

    RFID在物流系统中应用研究

    帖子创建时间:  2011年09月26日 17:39 评论:2 浏览: 523 投稿

    RFID在物流系统中应用研究

    摘要:物联网的概念近年来迅速普及,RFID技术作为物联网中一种重要技术,日趋走向成熟,在支付、生产、识别、防伪等众多领域都具有广泛的应用前景。如何将RFID技术应用到物流管理之中,降低物流成本、提高效率,已越来越引起业内人士的高度重视。本文通过分析RFID技术的特点,对RFID技术在物流应用中的存在问题做出一些探讨。

    关键词:物流  物联网  RFID

     

    1 引言

     

       无线射频识别技术(RFID)是一种非接触式自动识别技术。与传统的条形码、磁条等自动识别技术相比,RFID具有识别距离远、体积小、信息量大、环境适应性强等优点,可广泛应用于零售、物流、交通、医疗、国防等各个行业,被誉为本世纪最有发展前途的信息技术之一。RFID技术历史悠久,美国人HarryStockman于1948年10月在IRE学报上发表的论文《利用反射的功率进行通信》,首次详细描述了RFID的概念及其实现方法,至今已经有60多年的历史。

       近几年RFID技术发展十分迅速,RFID技术己经逐步应用到食品安全、物流等供应链系统中,美国的沃尔玛已经在其物流系统中全面使用RFID技术。在国内2008年北京奥运会中在奥运食品跟踪、票证防伪等均采用RFID技术,可见RFID技术应用已经非常广泛。我国对RFID的重视程度也越来越高,RFID作为将要进入人们日常生活中的新型技术,不仅蕴藏着巨大商业利益更涉及国家信息安全。为此,国家发布了《中国RFID技术政策白皮书》,并设立多个RFID标准组,涵盖RFID产业的各个方面。标准的制定将使RFID技术更加成熟,也将促使其更加广泛的应用。

       RFID技术在物流中应用是提升国内物流水平一个重要的手段,对物流和RFID产业都是一个重要契机。当前,尽管RFID技术在部分领域使用,但是都是封闭系统,不能产生规模效益。而在物流领域的使用能带动生产、销售等领域使用RFID技术,构筑成为物联网的一部分。现阶段,RFID技术在物流中使用并不成熟,本文就这些存在问题做了一些探讨。

     

    2 优势与问题

     

       RFID在物流中使用有巨大的优势,特别是UHF频段的标签,和传统上的识别手段相比具有以下优点: 
        (1)和传统的条形码、磁卡等识别技术相比RFID技术具有非常明显的优点。它工作范围大。识别器和识别对象间没有物理接触、适于恶劣环境抗干扰能力强、可以穿透非金属物体进行识别处理、可用于多目标识别及对运动目标进行识别等。 
        (2)RFID不需要人工去识别标签,读卡器可以快速从射频标签中读出位置和商品相关数据。有UHFRFID读卡器可以每秒读取200个标签的数据,这比传统扫描方式要快超过1000倍。 
        (3)电子标签封装形式多样,使用寿命长,可重复利用,而且很难伪造。电子标签可以粘贴于商品外包装或托盘上。

       但是RFID除了具有上面优势,但也存在两个方面的问题: 

       (1)成本问题:现阶段情况下,RFID设备相对条码设备有成本,无论是在读写设备还是标签上,RFID设备成本都是条码的数十倍,特别是在RFID未能大规模应用情况,RFID标签成本问题尤为突出,造成了很多企业望而却步。但在实际应用中,利用RFID优势可以大大降低成本,RFID优势是效率高,寿命长,能方便的采集信息,在产品的生产、物流、销售、售后服务等环节都需要产品信息,可以把RFID成本分摊的各个环节中,一个标签可以用在生产监控,提高生产效率;同时可以用在物流,加快物流速度;在销售和售后方面使用提高产品销售体验、改善售后服务。因此这种分摊方案不但可以达到产品相关数据在产品的各个环节共享,还可以把RFID成本分薄到各个环节,提高各个环节运行效率,最终达到总体上节约成本、提高效率的目的。
        (2)可靠性问题:RFID数据获取存在不可靠性,最为突出问题出现在UHF频段,大量标签聚集时,成功读取到所有的标签存在问题,特别在一个应用环境比较复杂情况下,经常存在漏读现象,解决这些问题除了采用增加硬件设备(如增加读写器或天线数量)、放大功率(如使用大功率的读写设备)、改进软件算法(如标签平滑算法)等技术手段外,还应该制定特定应用环境下的操作规范,例如选取标签贴在物品上的位置,尽可能选择易于读取的位置;贴有标签物品在移动时应该控制一定速度以增加被读取到几率。

       3 中间件框架

       在应用RFID技术的物流系统中,RFID读写设备较多、数据短时间内数据读写量大,企业的应用系统无法直接使用RFID采集的数据,必须需要进一步处理,这就需要RFID中间件。

       RFID中间件介于读写设备与应用系统之间,RFID系统的一个重要组成部分。中间件的主要任务是屏蔽不同标签、读写设备之间的差异并且对读写设备上传与标签相关的事件、数据进行过滤、汇集和计算,减少从读写设备传输到应用系统的巨量原始数据、增加有抽象意义信息量。中间件的设计是RFID应用的一项极为重要的核心技术,可以说,中间件是RFID系统的神经中枢。

       软件系统架构方法很多,如集中式、返回调用式、流水式等。其中适用于中间件的架构方式是层次调用结构,它具有结构清晰、层次分明、易于维护等特点,能较好的满足中间件的可扩展性、可伸缩性的要求。虽然层次架构可能会降低一定的系统性能,但是可以通过优化功能实现得到一定的补偿。因此RFID中间件采用了层次调用思想进行架构,并遵循 EPCglobal的中间件标准.

    面向物流的RFID中间件为三层结构,自下而上分别为读写器管理层、应用事件处理层及逻辑事件层。每层都可以独立运行,这使得中间件满足了可伸缩性要求,允许用户根据需求灵活配置。第一层为读写器管理层,主要负责管理系统中的读写器协调工作,兼容不同种类的读写器,处理原始的标签数据。这个层次产生的数据简单,但是实时性很强,可以满足低级应用,读写器管理层可以认为是一个应用程序中间件;第二层为应用事件处理层,主要负责读写周期的控制、访问控制、数据的过滤和聚集,以及应用事件所产生报告的订阅和分发,应用事件处理层是一个符合ALE标准的中间件;第三层是逻辑事件层,主要是形成物流业务逻辑的事件。

     

       4 设备管理

     

       目前物流中使用RFID技术存在的一个重要问题就是RFID读写设备数量众多,导致部署难度大,非常不便于管理。主要原因是读写设备本身的多样性,支持协议不统一,硬件指标也不一致。读写器管理层主要负责解决这些存在的问题,最终目标是实现读写器托管机制,使读写器管理操作对上层应用系统透明。RFID读写器网络管理层最终的目的是让上层系统直接利用读写器产生的数据,而不需繁琐的读写器知识,实现读写器托管机制,图2是读写器网络管理模型。

    在这个模型中,有远程控制、数据缓存和读写器适配器与外部交换数据,处于核心地位是控制中心,下面是简单介绍:
        (1)远程控制:接收远程控制命令,包括读写器设置、获取读写任务等等,但不接受数据服务,只接受控制命令,这样可以把控制命令和数据服务分离开,易于管理; 
        (2)控制中心:是整个系统的控制器,包括系统启动、关闭、错误处理等; 
        (3)调度中心:这是一个专门对UHF RFID应用设置的RFID在物流系统中应用的研究模块,由于 UHF RFID读写器存在冲突的可能,需要对多个读写器协调控制; 
        (4)网络管理:监控整个 RFID读写器网络,实时对整个网络上读写器进行监测,报告出错读写器,并针对有可能的修复提出修复措施,管理所有的读写器,更具体的说明请见下节; 
        (5)读写设备适配器:为了适应多种读写器,负责直接与读写器通信,设置读写器参数,并且能接收读写器产生的数据;

       RFID读写设备产生了大量数据,例如,在 EPC Class1 Gen2标准下, RFID读写器每秒最多能读到1800条数据,这些显然绝大部分都是重复数据,还可能有无效的数据(错读、漏读和多读),所以这些数据需要处理,剔除不必要的和错误的数据。这些处理通过标签平滑算法实现 (Tag Smoothing)。在标签的平滑算法中,一个标签是否被读取到并不是判断标签瞬间是否被读取到,而是去判断标签在一段时间的状态,这在一定程度上修正了错读、漏读和多读行为。

       标签平滑算法可以对读写器已经读取数据进行修正和精简数据。算法假定一个标签有三种状态 Unknown、Glimpsed和Observed。Unknown是标签未知状态,表示标签不在读取区域; Glimpsed是标签读取到一次后的状态; Observed是标签在读取区域的状态。

       算法还有重要变量: Tfirst:标签第一次读取到的时间; Tlast:标签最后一次读取的时间; Tnow:现在的时间; TagCount。标签被读取到的时间; GlimpsedTimeout:标签在 Glimpsed状态最长时间的一个阀值; ObservedTimeThreshold:标签有Glimpsed状态转入 Observed状态的时间门槛值; ObservedCountThreshold:标签有 Glimpsed状态转入Observed状态的读取次数门槛值; LostTimeout是标签 Observed状态转入 Unknown状态的时间阀值。 GlimpsedTimeout、ObservedTimeThreshold、 ObservedCountThreshold和LostTimeout是上层设定的一个常量。

       算法通过一个有限状态机实现,如图3所示,其规则如下: 

       (1)标签 Tag被读取到, Tnow为当前时间,当标签处于Unknown状态,这意味标签是第一次读取,标签转入 Glimpsed状态, TagCount=0,Tfirst和Tlast都置为 Tnow;当标签处于 Glimpsed状态, Tlast置为 Tnow,且 TagCount=TagCount+1;当标签在 Observed状态, Tlast置为 Tnow。 
        (2)标签处于 Glimpsed状态: GlimpsedTimeout有效(非空)且小于标签未被读取到时间 (Tnow-Tlast),这说明标签已经失效,标签转入 Unknown状态; ObservedCountThreshold有效(非空)且小于 TagCount,这说明标签已经确认读取到,标签转入 Observed状态; ObservedTimeThreshold有效(非空)且小于标签已经被读取的时间 (Tnow-Tfirst),这说明标签已经确认读取到,标签转入到Observed状态。

    东莞市虎门珠缘纺织品商行
    1. 商家友圈官方圈
      人数:8.1万
    2. 2A以上商家圈
      人数:8.2万